Феррорезонансные стабилизаторы напряжения

Содержание

Феррорезонансный стабилизатор напряжения – принцип действия

Феррорезонансные стабилизаторы напряжения

Феррорезонансный стабилизатор напряжения нашел широкое распространение в различных сферах промышленности и в быту. Такие феррорезонансные стабилизаторы напряжения дают возможность выровнять переменное напряжение. Также такие устройства имеют и недостатки, которые необходимо рассмотреть.

В настоящее время существует стандарт, по которому напряжение на выходе должно находиться в интервале 0,9-1,05 от номинального значения. Эта норма была определена давно и все устройства должны ей соответствовать. Напряжение сети на выходе должно равняться 197-230 В. Перед приобретением следует ознакомиться с однофазными моделями.

Феррорезонансные стабилизаторы

Такие устройства не оснащаются вольтметром, поэтому будет трудно понять, какая величина напряжения сети получается на выходе. Самому не получится отрегулировать напряжение. Если для вас это не критично, то такой вид стабилизатора хорошо подходит для вас. Феррорезонансные устройства могут частично искажать величину показаний, погрешность может доходить до 12%.

Если вы долгое время применяете такой прибор, то нужно знать, что он способен испускать магнитное поле, влияющее на функционирование бытовых приборов. Эти стабилизаторы настраивают в заводских условиях, поэтому после его монтажа нужно просто подключить в работу.

Влияние стабилизатора на технику

  1. Магнитофоны. Мощность на выходе таких устройств может сильно уменьшиться. Значительно ухудшается стирание записи.
  2. Радиоприемники. Такая аппаратура может снижать чувствительность, и выход мощности заметно снижается.
  3. Телевизоры.

    Если подсоединить прибор к телевизору, то можно увидеть заметное снижение качества изображения. Также некоторые цвета отображаются неверно.

Феррорезонансные стабилизаторы могут обладать негативными факторами.

Если у вас затруднения с выбором подобной аппаратуры, то следует ознакомиться с правилами подбора.

Бытовые электрические устройства постепенно становятся более качественными. Поэтому изготовители приборов такого вида тоже стараются сделать качественными свои изделия. Они делают лучше электрическую схему, позволяющую выдержать повышенные нагрузки.

Теперь это устройство может обеспечивать точную настройку напряжения сети. Процесс коррекции и выравнивания напряжения осуществляется трансформатором. При надобности он способен уменьшать или увеличивать длину вторичной обмотки.

Режимы эксплуатации

Эти режимы чаще всего зависят от различных факторов. На режим влияет мощность и вид прибора. Мощность устройства может быть различной и подбирать ее нужно, учитывая вид подключаемых устройств, которые планируется подсоединять для работы. Режимы работы выпрямляющего прибора зависят от следующих видов нагрузки:

  • Индуктивная.
  • Емкостная.
  • Активная.

Чисто активная нагрузка существует очень редко. Она требуется только в цепях без ограничения переменного значения прибора. Если вам нужно применить емкостную нагрузку, то нужно знать, что она служит только для стабилизаторов, имеющих малую мощность. Реакция определяется емкостью сопротивления, намного меньшего, чем нагрузка.

Принцип действия феррорезонансных стабилизаторов

Первичная обмотка, на которую приходит напряжение входа, находится на участке 2 магнитопровода. Он имеет значительное поперечное сечение, чтобы сердечник был в ненасыщенном состоянии. На входе напряжение образует магнитный поток Ф2.

На зажимах вторичной обмотки создается напряжение выхода. К ней подключается нагрузка, находящаяся на 3 участке сердечника, и имеет малое сечение, и насыщенное состояние. при отклонениях напряжения сети и магнитного потока, величина его почти не меняется, а также не изменится ЭДС. При повышении магнитного потока некоторая часть его будет замыкаться по магнитному шунту.

Поток Ф2 становится синусоидальным. Если поток Ф2 подходит к амплитудной величине, то третий участок переходит в насыщение, а магнитный поток перестает повышаться, и возникает поток Ф1.

В результате поток по магнитному шунту будет замыкаться только тогда, когда магнитный поток №2 по величине сравнивается с амплитудным.

Это создает поток Ф3 несинусоидальным, а напряжение становится тоже не синусоидальным.

Наличие конденсатора дает возможность прибору работать с повышенным коэффициентом мощности. А коэффициент стабилизации зависит от наклона горизонтальной кривой 2 к абсциссе. Этот участок обладает большим наклоном, поэтому получить большую стабилизацию без вспомогательных приборов не получится. Прямая передача тока дает возможность добиться повышенного усиления.

Достоинства

  • Невосприимчивость перегрузок.
  • Широкий интервал эксплуатационных величин.
  • Повышенная скорость регулировки.
  • Ток в форме синуса.
  • Повышенная точность выравнивания.

Недостатки

  • От величины нагрузки зависит качество работы.
  • Образование наружных электромагнитных помех.
  • При малой нагрузке плохая работа.
  • Плохие параметры веса и габаритов.
  • Повышенная шумность работы.

Современные устройства не обладают такими недостатками, но их стоимость часто больше источника бесперебойного питания. Также такие устройства не оснащены вольтметром.

Отрегулировать прибор нет возможности.

Советы по выбору

Бытовая техника постоянно модернизируется и совершенствуется. Поэтому изготовители феррорезонансных стабилизаторов напряжения стремятся к модернизации. Они повышают качество схемы, позволяющей справиться с большими перегрузками. Инновационные приборы такого вида отличаются повышенным быстродействием, точностью регулировки и длительным сроком работы.

Режимы определяются мощностью устройств и их типом. К устройствам с реактивной нагрузкой можно отнести те, которые имеют электрический двигатель – кондиционеры, нагреватели, вентиляторы.

Если нужно купить феррорезонансный прибор, то нужно учесть место его подключения. Это выполняется обычно на входе в помещение, или в непосредственной близости с бытовым устройством. Если планируется производить установку для всех устройств, то лучше подобрать систему стабилизации по необходимой мощности и подключить стабилизатор сразу за прибором учета энергии.

(6 4,50 из 5)

Источник: http://ostabilizatore.ru/ferrorezonansnyj-stabilizator-naprjazhenija.html

Феррорезонансный стабилизатор напряжения переменного тока: схема работы

Феррорезонансные стабилизаторы напряжения

Феррорезонансный стабилизатор напряжения – это прибор, разработанный с целью автоматического поддержания стабильных цифр электрического напряжения на входах приемников электричества, в независимости от величины нагрузки и сетевых колебаний.

Принцип действия феррорезонансного прибора

Действие стабилизаторов такого типа основывается на использовании достижения ферримагнитными сердечниками трансформаторов или дросселей своего предельного значения. Они используются для стабилизации напряжения питания бытовой техники, а также на различных промышленных объектах. Конструктивно они имеют сходство с обычными трансформаторами.

Этот вид стабилизирующего устройства сегодня очень популярен, так как дает возможность стабилизировать переменное напряжение. У него высокий порог чувствительности за счет того, что используются мощные блоки питания. Транзисторы в таких системах устанавливаются попарно.

Конденсаторы – важный элемент трансформации формы напряжения и его величины. В зависимости от производителя число конденсаторов в устройстве может варьироваться. От этого зависит конечный порог чувствительности. Конденсаторы нуждаются в особом уходе. Во избежание поломок, их не следует размещать под прямыми солнечными лучами.

Сами феррорезонансные стабилизаторы сильно не перегреваются за счет небольших радиаторов и корпуса. Их можно использовать для любого оборудования. Для того, чтобы стабилизировать величину электрического заряда, в феррорезонансных системах используется коллектор, а не тиристоры.

Вольтамперные характеристики

Из-за вольтамперной характеристики дросселя (линейного элемента, функционирующего в ненасыщенном режиме), которая отклоняется от прямо пропорциональной зависимости, вольтамперная характеристика всей системы, т.е. зависимость входного тока от входного сетевого напряжения, оказывается нелинейной.

Прямая передача сигнала позволяет добиться высокого коэффициента усиления. При этом уровень сопротивления в сети равен примерно 5 Мпа, а на выходе динамическое сопротивление — 3 (или два) МПа. Перегрузок в большинстве случаев не возникает, так как транзисторы предохраняют систему от высокого напряжения.

Плюсы и минусы

К достоинствам прибора можно отнести:

  • высокую точность стабилизации (не ниже 1%);
  • синусоидную форму тока;
  • высокую скорость регулировки;
  • широкий диапазон рабочих значений;
  • устойчивость к перегрузкам.

Но кроме плюсов такое оборудование может иметь и минусы. К недостаткам этой техники относят:

  • высокий уровень шума;
  • плохие массогабаритные показатели (для их усовершенствования современные устройства оснащаются объединенной магнитной системой;
  • плохую работу без нагрузки или при недостаточной нагрузке;
  • создание внешних электромагнитных помех;
  • зависимость качества стабилизации от объема нагрузки.

Современные приборы не имеют таких недостатков, однако их цена нередко превышает стоимость бесперебойника.

Кроме того, эта техника не имеет вольтметра, в связи с чем довольно трудно определить величину напряжение на выходе. Отрегулировать его невозможно.

Если для вас это – не проблема, значит такие устройства – это ваш выбор. Иногда феррорезонансные нормализаторы искажают данные. Погрешность может составить около 12%.

В настоящее время действует особый стандарт, регламентирующий нормы выходного напряжения. Согласно нему оно должно варьироваться от 0,9 до 1,05.

После того, как был установлен этот стандарт, прошло довольно много времени. Но все устройства, о которых идет речь, обязательно должны ему соответствовать.

Перед тем, как приобрести такое устройство, изучите виды аналогичных приборов для однофазового напряжения.

Если вы длительное время пользуетесь подобным стабилизатором, вам должно быть известно, что они способны излучать магнитное поле, оказывающие негативное влияние на бытовые приборы. Эти виды стабилизаторов настраивают там, где производят.

Влияние на бытовую технику

Феррорезонансные стабилизаторы могут негативно повлиять на следующую технику:

  • Телевизионные приемники. При подключении к ним феррорезонансного стабилизатора, растр значительно уменьшается. При этом искажаются некоторые цветовые лучи.
  • Радиоприемники. Выходная мощность устройства снижается. При этом оно может потерять свою чувствительность.

Какие нюансы учесть при выборе?

Техника для дома постоянно совершенствуется и развивается. Поэтому производители феррорезонансных стабилизаторов напряжения также стремятся к тому, что их усовершенствовать.

Они улучшают его схему, которая позволяет справляться с высокими нагрузками.

Современные устройства феррорезонансного типа отличаются самым высоким быстродействием (около 15 миллисекунд), высокой точностью настройки и продолжительным сроком использования.

Режимы работы прибора могут определяться его видом и мощностью. По типу мощности стабилизатор следует выбирать, исходя из вида оборудования, к которому вы собираетесь его применять. В большой степени режим работы устройства определяется характером его нагрузки, которая может быть активной или реактивной.

Первый вид нагрузки подразумевает, что вся потребляемая электроэнергия трансформируется в тепловую или световую энергию. Некоторое оборудование имеет только такую нагрузку (лампы накаливания, утюги, электроплиты).

К приборам с реактивной нагрузкой относятся устройства с электродвигателями. Реактивные нагрузки. К таким устройствам можно отнести приборы и изделия имеющие электродвигатель (вентиляторы, электронагреватели, кондиционеры).

Если вы собираетесь приобрести феррорезонансный стабилизатор, вам также следует исходить из того, где вы его собираетесь устанавливать. Это можно сделать при входе в дом или возле бытового прибора.

Если вы планируете проводить монтаж для всего оборудования, выбирайте стабилизирующую систему соответствующей мощности и подключайте феррорезонансный стабилизатор напряжения сразу после счетчика.

Источник: https://EnergoTechnics.ru/pages/15-ferrorezonansnii_stabilizator_napryazheniya_peremennogo_toka_shema_raboti.html

Стабилизаторы напряжения

Феррорезонансные стабилизаторы напряжения

Источник: http://www.td-m.ru/

Стабилизаторы напряжения — это устройства для автоматического поддержания постоянства значения электрического напряжения на входах приёмников электрической энергии (стабилизатор напряжения) или силы тока в их цепях (стабилизатор тока) независимо от колебаний напряжения в питающей сети и величины нагрузки.

Стабилизатор напряжения обеспечивает нагрузку стабилизированным напряжением только в том случае, если сетевое напряжения находится в определённых пределах.

Если сетевое напряжение выйдет за эти пределы (значительные превышения напряжения, равно как его кратковременные глубокие провалы или полное отсутствие), стабилизатор отключит питаемые электроприборы и они обесточатся.

Стабилизаторы напряжения бывают одно- и трёхфазные с мощностями от 100 ВА до 250 кВА и выше.

Типы стабилизаторов напряжения

Стабилизаторы напряжения бывают следующих типов:

Феррорезонансные. Были разработаны в середине 60 годов прошлого века, действие их основано на использовании явления магнитного насыщения ферромагнитных сердечников трансформаторов или дросселей. Применялись такие устройства для стабилизации напряжения питания бытовой техники (телевизор, радиоприёмник, холодильник и т.п.).

Достоинства феррорезонансных стабилизаторов: высокая точность поддержания выходного напряжения (1-3%), высокая (для того времени) скорость регулирования. Недостатки: повышенный уровень шума и зависимость качества стабилизации от величины нагрузки.

Современные феррорезонансные стабилизаторы лишены этих недостатков, но стоимость их равна или выше стоимости ИБП (Источника Бесперебойного Питания) на такую же мощность. Вследствие этого феррорезонансные стабилизаторы широкого распространения в качестве бытовых не получили.

Электромеханические.

В 60-80-е годы прошлого века для регулирования напряжения применялись автотрансформаторы с ручным регулированием выходного напряжения, вследствие чего приходилось постоянно следить за прибором, показывающим выходное напряжение (стрелочный или светящаяся линейка) и, при необходимости, вручную выставлять номинальное. В настоящее время коррекция выходного напряжения осуществляется автоматически, с помощью электродвигателя с редуктором.

Достоинство таких электромеханических стабилизаторов — высокая точность поддержания выходного напряжения (2-3%). Недостатки — повышенный уровень шума (шумит двигатель, и практически постоянно, т.к. отслеживается изменение напряжения на (2-4 В) и низкая скорость регулирования из-за инерционности двигателя.

При резком увеличении напряжения может кратковременно отключать нагрузку, т.к. напряжение на выходе может превысить максимально допустимое значение.

При этом, в большинстве случаев, такая высокая точность не требуется, достаточно 5-7%, как указано в паспортах на самые широкораспространённые бытовые электроприборы общего назначения.

Получили распространение как дешевые бытовые стабилизаторы.

Электронные (ступенчатого регулирования). Наиболее широкий класс стабилизаторов, обеспечивающих поддержание выходного напряжения с определенной точностью в широких пределах входного напряжения.

Принцип стабилизации основан на автоматическом переключении секций трансформатора с помощью силовых ключей (реле, тиристоров, симисторов).

В силу ряда достоинств, электронные стабилизаторы напряжения нашли наибольшее распространение на рынке стабилизаторов.

Достоинства: быстродействие, широкий диапазон входного напряжения, отсутствие искажения формы входного напряжения, высокое значение КПД. Недостаток — ступенчатое изменение выходного напряжения, ограничивающее точность стабилизации в пределах 0,9%-7%.

Данные стабилизаторы напряжения — оптимальное соотношение цена/качество при применении в промышленности и быту. Некоторые модели допускают возможность коррекции выходного напряжения в пределах 210-230 В.

Климатическое исполнение

Климатическое исполнение большинства предлагаемых стабилизаторов IP20, они предназначены для установки в помещениях с температурой окружающей среды +5…+35°С, с относительной влажностью воздуха 35-90%, с атмосферой, не содержащей пыли, водяных брызг и т.д. Если в помещении под установку стабилизаторов температура будет опускаться ниже 0°С, возможно исполнение в корпусах с подогревом.

Основные параметры и функции

Диапазон входного напряжения. Наряду с точностью стабилизации, является важнейшей его характеристикой. Этот диапазон состоит из двух категорий:

  • рабочий — когда входное напряжение находится в пределах, при которых на выходе обеспечивается заявленная величина стабилизации, например 220±5%;
  • предельный — когда стабилизатор сохраняет работоспособность, но напряжение на выходе отличается от заявленной величины в большую или меньшую стороны до 15-18%). При напряжении на входе, выходящем за рамки предельного, стабилизатор отключает электроприборы, сам оставаясь подключенным к сети для контроля с возможностью подключения электроприборов вновь в работу при возвращении питающей сети в рабочий (предельный) диапазон напряжений.

Точность стабилизации выходного напряжения зависит от величины входного напряжения, если оно находится в рабочем диапазоне, то точность стабилизации составляет 0,9-5% в зависимости от модели стабилизатора.

Перегрузочная способность — способность выдерживать кратковременные перегрузки от электроприборов, имеющих высокие пусковые токи (например, электродвигатель погружного насоса, холодильника и т.п.).

Защита от перегрузки и короткого замыкания на выходе. В случае перегрузки стабилизатора напряжения, когда со стабилизатора начинает сниматься мощность на 5-50% превышающая номинальную в течение продолжительного периода времени (от 0,1сек. до 1мин.

или немного более), срабатывает система защиты (время срабатывания защиты зависит от величины перегрузки), которая отключит стабилизатор и тем самым предотвратит его выход из строя. При наличии в стабилизаторе напряжения функции однократного повторного включения через 10 сек.

после его отключения по перегрузке, он снова включится. Если перегрузка при повторном включении стабилизатора отсутствует, то стабилизатор продолжает штатно работать. В случае короткого замыкания в цепи подключенных к стабилизатору электроприборов, стабилизатор отключится.

После чего обязательно необходимо выявить и устранить причину короткого замыкания и только потом включить стабилизатор.

Система контроля выходного напряжения. В случае выхода стабилизатора напряжения из строя или мгновенного увеличения входного напряжения такая система отключает электроприборы от стабилизатора и предотвратит их выход из строя.

Регулировка выходного напряжения. Наличие в некоторых моделях стабилизаторов возможности регулирования выходного напряжения в диапазоне 210-230В, что помогает решить одновременно несколько проблем:

  • возможно установить на выходе стабилизатора западные стандарты напряжения 230В для импортных электроприборов. Без подобной функции стабилизатор постоянно будет выходить за заданный для данных электроприборов нижний диапазон напряжения, что может вызвать сбои в их работе;
  • для ламп накаливания можно установить напряжение около 210В, что значительно увеличит срок их службы, световой же поток останется в пределах, заявленных производителем.

Автоматическое включение стабилизатора напряжения при возврате входного напряжения в установленный диапазон. Т.к.

стабилизатор отключает нагрузку в случае выхода входного напряжения за установленные пределы, он должен автоматически включаться и подключать нагрузку, если входное напряжение вернулось в установленный диапазон, иначе придётся следить за сетевым напряжением, включать стабилизатор напряжения вручную.

Наличие на входе и выходе стабилизатора напряжения фильтров подавления импульсных помех. Это полезная функция, которая защитит электроприборы от помех в радиочастотном диапазоне.

Подробнее о принципах работы стабилизаторов напряжения конкретного производителя Вы можете прочитать в соответствующем разделе.

Эта статья прочитана 6305 раз(а)!

Продолжить чтение

  • Источники бесперебойного питания UPS

Источник: https://www.solarhome.ru/biblio/biblio-autonom/stabs.htm

Феррорезонанс в трансформаторе напряжения: принцип работы стабилизатора напряжения

Феррорезонансные стабилизаторы напряжения

Феррорезонансный стабилизатор напряжения уже давно активно применяется не только в быту, но и в промышленности. Устройства этого класса позволяют выровнять напряжение переменного типа. В основе принципа функционирования заключается эффект электромагнитного резонанса в колебательном контуре. Такие нормализаторы обладают массой достоинств, но также имеют и свои недостатки.

Феррорезонансные явления в электрических сетях

Основные факторы, которые порождают феррорезонансные явления в электрических сетях – это элементы ёмкостного и индуктивного типа. Они способны формировать колебательные контуры в периоды переключения. Этот эффект особо заметен в трансформаторах силового типа, линейного вольтодобавочного, шунтирующих контурах и в аналогичных устройствах, которые оборудуются массивной обмоткой.

Данное явление бывает 2 типов: резонанс токов и напряжения.

Феррорезонанс напряжений возможен, когда в сети имеется индуктивность, характеризующаяся нелинейным вольт-амперным свойством.

 Данная характеристика свойственна катушкам индуктивности, где сердечники производятся из ферромагнитных компонентов. Особенно это касается выпрямителей линейки НКФ.

Такое негативное явление обуславливается небольшим показателем сопротивлений омического и индуктивного типов по отношению к силовым трансформаторам.

Феррорезонанс в трансформаторе напряжения

Когда трансформатор напряжения подключается к сети, в ней формируются последовательно совмещённые LC-цепи, являющие собой контур резонансного типа. При последовательном подключении индуктивного элемента с нелинейным вольт-амперным свойством к элементу ёмкостного типа напряжение в этой зоне цепи характеризуется как активно-индуктивное.

По окончании определённого временного периода значение напряжения на индуктивном элементе становится пиковым, магнитопровод питается, а напряжение на компоненте ёмкостного типа продолжает расти. Феррорезонанс в трансформаторе напряжения наступает, когда напряжение индуктивности и ёмкостного элемента становится равнозначным.

Быстрый переход приложенного напряжения из активно-индуктивного типа в активно-ёмкостной именуется как “опрокидывание фазы”. Такой эффект опасен для электроприборов.

Достоинства и недостатки

Среди ключевых плюсов феррорезонансных выпрямителей можно отметить:

  • стойкость к перегрузкам;
  • обширный интервал эксплуатационных значений;
  • быстрота регулировки;
  • ток обретает форму синуса;
  • высокая точность выравнивания.

Но при всех этих преимуществах имеются у приборов данного класса и свои минусы:

  • Качество функционирования зависит от показателя нагрузки.
  • При работе формируются внешние электромагнитные помехи.
  • Нестабильное функционирование при небольших нагрузках.
  • Высокие показатели массы и размеров.
  • Возникновение шума при работе.

Большинство современных моделей лишены таких недостатков, но они выделяются немалой стоимостью, порой выше, нежели цена ИБП. Также устройства не оборудуются вольтметром, что лишает возможности их регулировки.

Феррорезонансный стабилизатор напряжения своими руками

Феррорезонансная схема является наиболее простой для собственноручного изготовления. В основе её функционирования лежит эффект магнитного резонанса.

Конструкцию довольно мощного выпрямителя феррорезонансного типа можно собрать из трёх элементов:

  • первичного дросселя;
  • вторичного дросселя;
  • конденсатора.

При этом простота такого варианта сопровождается целым набором неудобств. Мощный нормализатор, изготовленный по феррорезонансной схеме, выходит массивным, громоздким и тяжёлым.

Источник: https://StrojDvor.ru/elektrosnabzhenie/ferrorezonans-v-transformatore-naprazenia/

Типы стабилизаторов напряжения: достоинства и недостатки каждого вида

Феррорезонансные стабилизаторы напряжения

На производстве и в быту широко применяется электрическая энергия.

Переменным током питают системы освещение, приводы механизмов электрических приборов, его подают на  сетевой разъем электронных устройств.

Сбытовые организации не всегда обеспечивают надлежащее качество электрических сетей, что проявляется, в частности, в колебаниях сетевого напряжения. Это неприятное явление характерно для:

  • дачных поселков и небольших населенных пунктов;
  • сетей автономных электростанций, не входящих в единую энергосистему.

Колебания отрицательно влияют на качество функционирования техники, снижают ее надежность. Застраховать себя от этого явления можно применением стабилизатора, который включают между сетью и нагрузкой, рисунок 1.

Рисунок 1. Схема включения стабилизатора

Типы стабилизаторов напряжения по принципу работы

Стабилизацию можно выполняться различными способами. Принципы стабилизации, использованные разработчиком, определяют типы стабилизаторов напряжения.

Релейные

Релейные стабилизаторы, часто называемые ступенчатыми, представляют собой силовой трансформатор с несколькими выходами вторичной обмотки, один из которых принимается за общий.

Датчик отслеживает состояние сети, при выходе за пределы разрешенных допусков осуществляет автоматическую регулировку выходного напряжения с помощью переключения реле.

При срабатывании отдельных силовых реле происходит переключение обмоток с подключением нагрузки на тот вывод, напряжение на котором минимально отличается от заданного.

Конструктивная простота релейных стабилизаторов, неплохая точность регулирования, невысокая стоимость, высокая надежность обеспечивают им высокую популярность.

Недостатки:

  • ступенчатый характер регулирования;
  • заметные искажения формы синусоиды тока нагрузки при высоком входном напряжении из-за магнитного насыщения сердечника;
  • относительно слабая нагрузочная способность рабочих контактов реле;
  • высокий уровень акустического шума.

Электромеханические (сервоприводные)

Электромеханические или сервоприводные стабилизаторы устраняют один из основных недостатков стабилизаторов с механическими реле: обеспечение только ступенчатой регулировки выходного напряжения.

Принцип их действия основан на изменении коэффициента трансформации. Оно реализовано с помощью щетки, соединенной с электродом выходных клемм.

Щетку перемещает по вторичной обмотке тороидального трансформатора вспомогательный электродвигатель, рисунок 2.

Рисунок 2. Конструктивные особенности сервоприводного регулятора

Для электромеханических стабилизаторов характерны большой диапазон регулировки, небольшие габариты, малая стоимость.

Основные недостатки: низкое быстродействие, хорошо слышимый ночью шум работающего электродвигателя.

Инверторные (бесступенчатые, бестрансформаторные, IGBT, ШИМ)

Инверторные стабилизаторы реализуют двухступенчатую схему получения выходного напряжения. Сначала переменный входной ток преобразуют в постоянный, а затем из него вновь генерируют переменное напряжение. Автоматическое регулирование происходит на этапе формирования постоянного тока, здесь же реализованы функции ступени стабилизации.

Существует несколько вариантов каскадного преобразования, каждому из которых соответствует подкласс инверторных стабилизаторов. Наибольшее распространение получили ШИМ-устройства и стабилизаторы на IGBT-транзисторах.

Сильные стороны этого оборудования:

  • высокая скорость реакции на изменения входного напряжения, точность регулировки выходного;
  • хорошие массогабаритные характеристики (отсутствует силовой трансформатор);
  • простотой получения КПД выше 50 %;
  • возможность плавной регулировки выходного напряжения в сочетании с широкими пределами изменения выходного электрического тока, а также работы на холостом ходе;
  • эффективное подавление скачков напряжения и импульсных помех.

При применении надлежащей элементной базы инверторная техника нормально функционирует при отрицательных температурах.

Главный недостаток: плохая перегрузочная способность, в т.ч. кратковременная (не более 25 – 50% на протяжении 1 – 2 с).

Последнее заставляет тщательно контролировать выходную мощность устройства при работе на реактивную нагрузку (электродвигатели различного назначения, вентиляторы и т.д.).

Кроме того, следует принимать во внимание сложность электрической схемы, что увеличивает риски отказа, и высокую стоимость из-за необходимости применения силовой полупроводниковой элементной базы.

Феррорезонансные

Феррорезонансный стабилизатор — это устройство трансформаторного типа. Его характерная особенность — применение обмоток трансформатора, одетых на магнитопроводы разного поперечного сечения.

Параллельно вторичной обмотке L2 подключен дополнительный конденсатор С, рисунок 3. Его емкость подобрана так, чтобы за счет резонанса обеспечивать постоянное насыщение магнитопровода вторичной обмотки.

Отсюда большие изменения входного напряжения не приводят к колебаниям выходного.

Рисунок 3. Схема феррорезонансного стабилизатора

Стабилизатор имеет высокую скорость отработки скачков, обладает повышенной надежностью за счет отсутствия схем переключения, обеспечивает неплохую точность стабилизации.

Отсутствие механически подвижных компонентов позволяет эксплуатировать феррорезонансные стабилизаторы при небольших отрицательных температурах.

Главные недостатки:

  • меньший коэффициент мощности;
  • значительные нелинейные искажения выходного тока, которые могут привести к нарушениям функционирования ряда бытовых приборов, например, к искажениям изображения цветного телевизора и некачественному стиранию старых записей магнитофоном;
  • нестабильность функционирования при вариациях частоты входного напряжения более чем на 0,5 Гц от номинального значения, что нередко встречается при питании населенного пункта от автономной электростанции.

Электронные (симисторные, тиристорные)

Так называемые электронные стабилизаторы структурно повторяют устройства на электромагнитных реле, но для ступенчатых переключений обмоток авторансформатора использованы полупроводниковые изделия.

Возможно несколько разновидностей таких электронных схем, каждая из которых осуществляет автоматическое переключение коэффициента трансформации.

Серийно выпускаются стабилизаторы, в которых функции ключевых элементов ступенчатого регулирования возложены на симисторы и тиристоры.

Тиристор — это полупроводниковая структура с тремя p-n-переходами, в которой выполнена глубокая положительная обратная связь. Ее наличие обеспечивает высокую скорость переключения при работе в ключевой режиме.

Симистор образован двумя тиристорами с объединенными управляющими электродами, включенными встречно-параллельно, рисунок 4. За счет возможности пропускания тока этим компонентом в двух направлениях симисторные стабилизаторы демонстрируют повышенный КПД.

Это выгодно отличает их от тиристорных стабилизаторов.

Рис. 4. Принципиальная схема простейшего варианта симисторного регулятора

Общие преимущества:

  • повышенный коэффициент стабилизации;
  • прекрасное подавление перепадов напряжения, импульсных помех;
  • хорошие массогабаритные параметры;
  • высокая надежность при реализации на качественной элементной базе.

Кроме того, по быстродействию электронные стабилизаторы заметно превосходят свои релейные электромеханические аналоги, т.е. хорошо отрабатывают скачки напряжения.

Недостатки:

  • плохо адаптированы для работы с реактивной нагрузкой;
  • высокая стоимость;
  • сложность выполнения ремонта.

Виды стабилизаторов напряжения по классу напряжения

Промышленность выпускает широкую гамму стабилизаторов.

Различают однофазные и трехфазные устройства.

По диапазону выходных напряжений электронное оборудование для однофазных сетей рассчитано на 220 – 240 В (популярна также промежуточная градация 230 В), доступны феррорезонансные стабилизаторы на 110 – 120 В.

Бытовое оборудование для трехфазных электросетей обеспечивает выходное напряжение 380 – 415 В вне зависимости от применяемых схемных решений и отдаваемого тока нагрузки.

Техника промышленного назначения может иметь более высокое выходное напряжение: вплоть до 6 – 10 кВ.

Походы к выбору стабилизатора

Перечень параметров, по которым выбирают стабилизаторы, обязательно включает:

  • мощность нагрузки или отдаваемый номинальный ток;
  • выходное напряжение;
  • тип сети (однофазная – трехфазная).

Большую помощь окажет информация о стабильности сети, уровне импульсных помех в ней.

При определении номинальной мощности суммируют мощности всех потребителей защищаемой сети. Для оценки мощности номинальной нагрузки токовую нагрузочную способность входного автомата умножают на 220 В.

При прочих равных условиях выбирают однофазные модели линейных стабилизаторов, учитывают, что модульные конструкции более удобны в обслуживании.

Учитывают эстетические параметры и количество выходных розеток, рисунок 5.

Рис.5. Вариант исполнения однофазного стабилизатора

Окончательный выбор целесообразно выполнять с учетом производителя и места изготовления. Для определения качества техники юго-восточного производства, выпускаемой без контроля со стороны ведущих западных компаний, имеет смысл изучить профильные форумы. Такой подход позволяет сделать адекватный вывод о качестве прибора.

Кроме технических параметров обязательно принимают во внимание доступность сервисного обслуживания.

Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ.

Заключение.

Промышленность выпускает широкую гамму бытовых стабилизаторов напряжения, что позволяет произвести  выбор конкретной модели устройства с учетом конкретной области применения.

Массовый характер рынка стабилизаторов определяет большое количество работающих на нем производящих предприятий, предлагающих свою продукцию через партнерскую сеть. Поэтому перед покупкой следует выполнить тщательный многокритериальный отбор продукта.

по в дополнение статьи

Источник: https://www.asutpp.ru/tipy-stabilizatorov-napryazheniya.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.